近期,中国科学院合肥物质科学研究院应用技术研究所先进材料中心研究员田兴友和副研究员张献团队在同步实现导热绝缘及电磁屏蔽性能的先进电子封装材料制备方面取得新进展,相关成果发表在复合材料期刊Composites
Part A
117 56–64上。

近期,应用所先进材料中心田兴友研究员和张献副研究员团队在同步实现导热绝缘及电磁屏蔽性能的先进电子封装材料制备方面取得了新的研究进展,相关成果发表在Composites
Part A 117 56–64
复合材料领域的TOP期刊上。

近期,应用所先进材料中心田兴友研究员和张献副研究员带领的研发团队在轻质氟塑料基纳米复合材料的制备与抗电磁干扰性能的研究方面取得新进展,相关成果发表在Composites
Science and Technology 125 22-29;Composites: Part A 90 606–613

上,并申报了国家发明专利一项。

近年来,随着电子器件逐渐向大功率、小型化及高集成度方向发展,散热问题逐渐成为制约下一代高功率密度电子器件发展的瓶颈问题;同时,电子元件分布密度过高或高频电路造成的电磁干扰问题愈加严重,尤其是随着高频高速5G时代的到来,对电磁屏蔽材料提出了更高的要求。因此,如何同步实现电子封装材料的高导热绝缘与抗电磁干扰性能成为目前急需解决的关键技术问题。

近年来,随着电子器件逐渐向大功率、小型化及高集成度方向发展,散热问题逐渐成为制约下一代高功率密度电子器件发展的瓶颈问题;同时,电子元件分布密度过高或高频电路造成的电磁干扰问题愈加严重,尤其是随着高频高速5G时代的到来,对电磁屏蔽材料提出了更高的要求。因此,如何同步实现电子封装材料的高导热绝缘与抗电磁干扰性能成为目前急需解决的关键技术问题。

随着现代计算机以及通信技术等的广泛应用,电磁干扰问题日益严重。发展高性能的电磁屏蔽材料,成为了众多科研工作者的目标。相比于传统金属屏蔽材料,高分子复合材料因具有质轻、抗腐蚀、易于加工、导电性可调控等突出优点,近些年成为了研究的热点。应用所研究组选用具有高导电性的多壁碳纳米管为功能材料,耐化学腐蚀、耐高温等性能优异的聚偏氟乙烯为高分子基体。一方面,通过调控碳纳米管在共混相中的选择性分布,采用热压和刻蚀的方法制备了PVDF/MWCNTs纳米复合轻质板材,由于该材料独特的结构设计,获得了优异的电磁屏蔽性能。另一方面,采用相分离技术制备了PVDF微球,并通过共混与热压的简易方法,获得了具有独特隔离网络结构的氟塑料基纳米复合材料,该材料呈现出了优异的抗电磁干扰性能,并且是一种以吸波为主要机制的屏蔽机制。

电子封装材料在某些场合下具有电绝缘特性的要求,而目前碳系复合材料在改善导热性能的同时,通常会引起导电性能的提升,从而影响了封装材料的实际应用。该课题组以聚偏氟乙烯为研究对象,构筑了多壁碳纳米管与氮化硼的隔离双网络结构,满足材料导热与抗干扰性能的同时,兼顾了电子封装材料的电绝缘性能。首先原位制备了PVDF@MWCNT复合微球,在微球内部形成了导电网络又提高了PVDF的导热性能;然后在微球外部,采用绝缘BN导热填料构建了完整的导热网络通路,并通过整体包覆降低了复合微球的导电性能,从而使得复合材料在实现导热和电磁屏蔽性能同步提升的基础上,兼具有良好的电绝缘性能。

电子封装材料在某些场合下具有电绝缘特性的要求,而目前碳系复合材料在改善导热性能的同时,通常会引起导电性能的提升,从而影响了封装材料的实际应用。本课题组以聚偏氟乙烯为研究对象,构筑了多壁碳纳米管与氮化硼的隔离双网络结构,满足材料导热与抗干扰性能的同时,兼顾了电子封装材料的电绝缘性能。首先原位制备了PVDF@MWCNT复合微球,在微球内部形成了导电网络又提高了PVDF的导热性能;然后在微球外部,采用绝缘BN导热填料构建了完整的导热网络通路,并通过整体包覆降低了复合微球的导电性能,从而使得复合材料在实现导热和电磁屏蔽性能同步提升的基础上,兼具有良好的电绝缘性能。

研究组采用的两种方法简单易行,绿色环保,成本低廉,获得的复合材料都体现出较高的电磁屏蔽性能,具有广泛的应用前景。

该方法工艺简单、成本低廉,易于规模化,且获得的复合材料具有良好的导热绝缘及抗电磁干扰性能,有望在大功率集成电路、5G通讯、高功率雷达、太赫兹通信设备等领域广泛应用,满足新一代装备对电磁兼容与散热的迫切需求,具有广泛的应用前景。该研究工作得到国家重点研究发展计划、安徽省自然科学基金和安徽省环境友好型高分子材料重点实验室的项目支持。

本方法工艺简单、成本低廉,易于规模化,且获得的复合材料具有良好的导热绝缘及抗电磁干扰性能,有望在大功率集成电路、5G通讯、高功率雷达、太赫兹通信设备等领域广泛应用,满足新一代装备对电磁兼容与散热的迫切需求,具有广泛的应用前景。该研究工作得到了国家重点研究发展计划,安徽省自然科学基金和安徽省环境友好型高分子材料重点实验室的项目支持。

该研究工作得到国家自然科学基金的资助。

文章链接

betway88 1betway88 2复合材料隔离双网络结构的制备示意图及导热性能betway88 3betway88 4复合材料的电绝缘与抗电磁干扰性能

betway88 5

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章